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Abstract
An exact dynamical parametrization of pulse-induced transition amplitudes
in a Rosen–Zener- or Nikitin-type two-level system is constructed. The
three dynamical parameters are closely related to the shape of the interaction
pulse and are convenient to calculate. The Milne equation with a complex
coefficient function is essential for these calculations. Its complex solution is
non-oscillatory and makes the computation of transition probabilities efficient.
The paper reviews the quantum calculations for the rectangular pulse, which
has well-defined duration and strength. By comparing transition matrix
elements from a rectangular pulse with those of a general symmetric pulse,
we introduce effective strength and effective duration for a general pulse. It
is also possible to define an equivalent rectangular pulse, with respect to the
transition probabilities, for each general pulse.

PACS numbers: 03.65.−w, 03.65.−Sq, 03.65.Nk, 31.15.−p, 31.15.Gy,
31.70.Hq, 32.80.Qk, 34.10.+x

1. Introduction

A fundamental problem in quantum mechanics is to analyse time evolutions and transitions
between a limited number of states. In particular, the two-state system is analysed in much
detail [1]. Only in rare cases can this problem be solved analytically. Some simplifying models
of the general problem have been constructed to explain various mechanisms responsible for
the transitions. For example, the Landau–Zener model [2] focuses on the crossing mechanism
of a pair of energy levels while the Nikitin or Rosen–Zener model [3] focuses on non-crossing
mechanisms.

Although the Nikitin model originates in the context of inelastic semiclassical collisions,
it is generic to a large class of problems including the more recent topics of pulsed laser
field-induced coherent population transfer [4, 5]. Particularly for laser-induced transitions it
is of interest to have a general grasp of the transition dependence of pulse shapes in terms of
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duration, integrated pulse area, etc [6, 7]. Also there are very few analytically solvable cases
here (see, e.g., [4, 8]).

The prime purpose of this work is to derive a general dynamical parametrization of
transition amplitudes in terms of well-defined parameters which are closely related to the
shape of a time-symmetric pulse interaction.

The fact that a linear system of first-order differential equations describing time evolution
of atomic-state amplitudes can always be transformed into a system of decoupled second-
order equations having the form of the parametric harmonic oscillator (or time-independent
Schrödinger) equation, one for each atomic-state amplitude, allows us to apply the recent
pulse-dynamical amplitude-phase method [9]. Here the amplitude part of the decomposition
of the atomic state is described by the well-known Milne equation [10]. One obstacle related
to this approach in the present context is the complex-valued character of the parameters that
appear in the final equations. The complex Milne solution behaviour is therefore central to
our problem.

The paper is organized in the following way. Section 2 introduces the time-dependent two-
state model and clarifies the relations between the transition amplitudes due to the symmetry
of the pulse. An example with a rectangular-pulse interaction is analysed in detail. Section 3
reformulates the problem as a decoupled complex second-order differential equation. Certain
symmetry solutions are discussed. In section 4 they help us to show that certain well-behaved
solutions exist for the Milne equation, associated with the decoupled second-order equation.
The particular Milne solution satisfies a conserved energy equation before and after the pulse
interaction such that it oscillates between two complex conjugate turning points. Based on
this ‘coherent’ Milne solution we derive the original transition matrix elements in section 5.
Section 6 discusses quantum-equivalent pulses and the main conclusions are in section 7.
A supporting appendix contains some detailed derivations.

2. The quantum state amplitudes

In this paper we analyse a coupled two-state quantum system, where the amplitudes satisfy
(in reduced units and scaled time) an equation of the matrix form

ȧ = −iH(t)a (1)

with

a =
(

a1(t)

a2(t)

)
H(t) =

( −1 �(t)

�(t) 1

)
(2)

where �(−t) = �(t) is a symmetric pulse function satisfying �(t) → 0, as t → ±∞. In
atom–laser dynamics each diagonal element corresponds to the atom–field detuning and �(t)

corresponds to the time-dependent Rabi frequency. The resonant situation when the detuning
(diagonal elements in H(t)) is zero is not specifically studied in this work.

We define a fundamental solution matrix U(t) of state amplitudes from the asymptotic
conditions:

U(t) =
(

exp(it) 0
0 exp(−it)

)
as t → −∞. (3)

and

U(t) =
(

exp(it) 0
0 exp(−it)

)(
A11 A12

A21 A22

)
as t → ∞ (4)

where U(t) and A are unitary. In addition we note that

det U(t) = det A = 1. (5)
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This can easily be seen by noting that the time derivative of the determinant is proportional to
trace(H), which is zero in the present case. Hence the determinant of U(t) is constant.

The rectangulars of the absolute values of the matrix elements Aij define the transition
probabilities in the system. The internal structure (the parametrization) of these matrix
elements is important for the development of the theory in later sections.

Due to time symmetry (note that H(−t) = H(t) = H∗(t)), we observe that U∗(t) and
U(−t) satisfy the same equation, but with different boundary conditions. In particular,

U(−t) =
(

exp(−it) 0
0 exp(it)

)(
A11 A12

A21 A22

)
as t → −∞. (6)

To make the boundary conditions agree with those of U∗(t), we multiply U(−t) from the right
by the matrix A†. As a result

A∗ = A† (7)

i.e. the unitarity constraints A11 = A∗
22, A12 = −A∗

21 are sharpened to

A22 = A∗
11 (8)

A12 = A21 = −A∗
12. (9)

We note that the off-diagonal elements are equal and imaginary.

Example 1 (Rectangular-pulse transitions). We take the profile �(t) = β,−T � t � T ,
and zero elsewhere. The asymptotic forms for the fundamental solutions are defined by the
boundary conditions above. We would like to find all amplitudes for the rectangular pulse in
this example. This is done by fitting the asymptotic regions to a general solution inside the
pulse.

The components are coupled inside the pulse, so we put an ansatz for the first component
only:

a1(t) = B+ exp(iγ t) + B− exp(−iγ t) γ =
√

1 + β2. (10)

This is based on a second differentiation, where the components decouple and satisfy the same
second-order equation. The derivative of a1(t) is

ȧ1(t) = iγB+ exp(iγ t) − iγB− exp(−iγ t). (11)

The component a2(t) is obtained by inserting both the above expressions into the first of the
coupled equations:

a2(t) = (1 − γ )

β
B+ exp(iγ t) +

(1 + γ )

β
B− exp(−iγ t). (12)

The two unknown coefficients B± are determined from continuity at t = −T , for each
independent solution vector. The result is

B(1)
+ = (γ + 1)

2γ
e−i(1−γ )T B

(1)
− = (γ − 1)

2γ
e−i(1+γ )T (13)

and

B(2)
+ = − β

2γ
ei(1+γ )T B

(2)
− = β

2γ
ei(1−γ )T . (14)

Inserting the coefficients into a1(t) and a2(t) and fitting to the asymptotic expressions at t = T ,
all amplitudes Aij are finally found:

A11 = A∗
22 =

(
cos(2γ T ) + i

1√
1 + β2

sin(2γ T )

)
e−2 iT (15)
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A12 = A21 = −i
β√

1 + β2
sin(2γ T ). (16)

Strictly speaking, the area of the field pulse is 2βT . It is thus clear that the dynamic phases
in the transition amplitudes correspond to another, combined (or dressed) area 2γ T . The
possible maximal transition probability, determined by |A12|2 (=|A21|2) for sin(2γ T ) = ±1,
is seen to depend only on the strength β of the pulse. The pulse duration 2T alone is not
present in |A12|2 and |A11|2.

3. Analysis of the second-order equations and transitions

A particular transformation of the first-order quantum mechanical equations (1) can be achieved
by a second differentiation, obtaining

ä + (H2(t) + iḢ(t))a = 0. (17)

This equation is of the standard coupled parametric-oscillator type and provides interesting
applications for amplitude-phase analysis (see, e.g., [11]) and refined standard semiclassical
approximations [12, 13].

The second-order coupled equations based on representation (2) are formally equivalent
to coordinate-coupled parametric oscillators ä + K(t)a = 0 with a complex coefficient matrix

K(t) =
(

1 + (�(t))2 i�̇(t)

i�̇(t) 1 + (�(t))2

)
. (18)

We apply a real, time-independent Hadamard transform to new state amplitudes:

x = Ta x =
(

x1(t)

x2(t)

)
(19)

with

T =
(

1 1
1 −1

)
. (20)

The transformation leads to a significant formal simplification of the second-order equations
later. The first-order equations (1) now read

ẋ = −iHx(t)x (21)

with

Hx(t) =
(

�(t) −1
−1 −�(t)

)
. (22)

By a second differentiation the equation simplifies to a diagonal problem

ẍ + Kx(t)x = 0 (23)

where the coefficient matrix Kx(t) is

Kx(t) =
(

1 + (�(t))2 + i�̇(t) 0
0 1 + (�(t))2 − i�̇(t)

)
. (24)

Equations (23) correspond to two decoupled complex parametric oscillators. Due to the
unitarity relations (9) we actually need only x1(t) to finally obtain all the matrix elements Aij .
Let us define the principal equation

ẍ1 + ω2(t)x1 = 0 (25)
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with

ω2(t) = 1 + (�(t))2 + i�̇(t). (26)

Combining (3), (4) and (19) we can specify the two independent solutions to (25) by the
asymptotic conditions

g1(t) = exp(it) as t → −∞ (27)

g1(t) = A11 exp(it) + A21 exp(−it) as t → ∞ (28)

and

g2(t) = exp(−it) as t → −∞ (29)

g2(t) = A12 exp(it) + A22 exp(−it) as t → ∞. (30)

Example 2 (Symmetry solutions for the rectangular pulse). We define �(t) = β,−T � t �
T , and zero elsewhere. We construct the symmetric basis from the inner region and make an
ansatz only for the x1 component. The coupling of x1 and x2 through the first-order equations
then provides the corresponding symmetry solution for x2. Hence, the symmetric solution for
x1 is

C1(t) = cos(γ t)/
√

γ t < T γ =
√

1 + β2 (31)

and the anti-symmetric solution is

S1(t) = sin(γ t)/
√

γ t < T (32)

with Wronskian Ṡ1(t)C1(t) − S1(t)Ċ1(t) = 1 for the present normalization. The
corresponding x2 components are

C2(t) = β cos(γ t)/
√

γ + i
√

γ sin(γ t) t < T (33)

and

S2(t) = −i
√

γ cos(γ t) + β sin(γ t)/
√

γ t < T . (34)

We note that the symmetry basis here does not satisfy the same Wronskian constant. Instead
we have Ṡ2(t)C2(t) − S2(t)Ċ2(t) = −1.

Proceeding with both symmetry solutions to the right boundary t = T , we fit them to the
asymptotic forms

x1(t) = D+ eit + D− e−it T < t (35)

and

x2(t) = D+ eit − D− e−it T < t. (36)

In either case we determine D± and find in the asymptotic region t > T . We get for the
symmetric solutions

D± = 1

2
√

γ
([1 ± β] cosγ T ± iγ sin γ T ) e∓iT (37)

and for the anti-symmetric solutions

D± = 1

2
√

γ
([1 ± β] sin γ T ∓ iγ cos γ T ) e∓iT . (38)

This result will be used with reference to the existence of certain symmetric so-called Milne
solutions pertinent to the second-order oscillator equation.
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4. Complex parametric pulses

In this section we discuss the principles that generalize the result of [9] to complex symmetric
parametric pulses of the harmonic oscillator. The oscillator subject to the relevant parametric
pulse in our problem (see equation (25)) can be written as

ẍ + ω2(t)x = 0, ω2(t) → 1 as t → ±∞ (39)

where we assume (see equation (26))

[ω2(−t)]∗ = ω2(t) (40)

which is known as PT -symmetry (see, e.g., [14] and references therein).
We stay in the framework of the classical parametric oscillator and review the results

obtained for a purely real symmetric parametric pulse. The resulting transition matrix for the
fundamental propagating oscillations [exp(it), exp(−it)] due to a real symmetric pulse was
found in the form

P =
(

(cos δ + iEM sin δ) e−iτ i
√

E2
M − 1 sin δ

−i
√

E2
M − 1 sin δ (cos δ − iEM sin δ) eiτ

)
(41)

where the three dynamical parameters EM, δ and τ are defined in terms of a symmetric and
positive solution of the Milne equation (see [9])

ρ̈ + ω2(t)ρ = 1

ρ3
. (42)

By direct substitution into (42) it can be shown that a correct asymptotic form for the Milne
solution is given by

ρ(t) → q(t) =
√

EM −
√

E2
M − 1 cos(2t − τ ) t → +∞ (43)

and a corresponding expression for t → −∞ is obtained from the symmetry ρ(−t) = ρ(t).
Two of the dynamical parameters appear here: EM is identified as the conserved ‘energy’ of
the Milne oscillator as t → +∞ (see figure 3), i.e.

EM = 1
2 q̇2 + 1

2q2 + 1
2q−2 (44)

and t = τ/2 determines the event of reaching the inner one of the turning points

q± =
√

EM ±
√

E2
M − 1 (45)

in that oscillator. With an appropriate choice of angular modulus and comparisons with
analytic pulse models, τ was identified as the effective duration of the pulse.

The final parameter, the dynamic phase shift, is given by

δ = 2 lim
t→+∞

(∫ t

0
ρ−2(t ′) dt ′ −

∫ t

τ/2
q−2(t ′) dt ′

)
(mod 2π). (46)

The complex Milne oscillator. Due to the complex parameter ω2(t), the Milne solution is
expected to become complex valued and oscillating in the asymptotic regions t → ±∞. This
does not mean that the Milne energy EM is complex in general. A study of the turning point
expressions (45) for positive EM reveals that turning points become complex conjugates as
0 < EM < 1. For a general complex-valued Milne oscillator the coordinate q traces out a
closed loop in the complex plane and there are no turning points (defined by q̇ = 0). Real and
imaginary parts of q do not have coherent (in phase) oscillations along a line as for the real
energy case.
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Figure 1. The Milne solution approaches the coherent asymptotic oscillator (with complex
conjugate turning points). The pulse is �(t) = β cos2(πt/(2T )) with T = 1 and β = 5.

To find a coherent solution we need specific initial conditions. It turns out that the
stationary ‘classical’ conditions (see a discussion in [15]) develop the Milne solution into the
coherent complex Milne oscillator, i.e.

ρ(0) = ω(0)−1/2 ρ̇(0) = 0. (47)

For a symmetric pulse, ρ(0) is seen to be real. We assume that the coherent oscillation exists
with these initial conditions for a significant class of pulses of interest. In the appendix we
clarify the relation between the Milne solution and any fundamental basis of the parametric
oscillator equation and we explicitly verify the existence of Milne oscillations with complex
turning points for the rectangular pulse.

It is easy to show that the initial conditions (47) are compatible with a symmetric Milne
solution ρ(t), which satisfies

ρ(−t) = ρ∗(t). (48)

Obviously we start at a real turning (or stationary) point of ρ(t) in the inner pulse region and
assume that the complex oscillation possesses turning points also in the asymptotic regions.

The asymptotic oscillatory form of the Milne solution is formally the same as in (43)
and we may still keep the parameter τ real. If at t = τ/2 the asymptotic Milne solution for
0 < EM < 1 is located at the upper (complex) turning point, we have

ρ(t) → q(t) =
√

EM + i
√

1 − E2
M cos(2t − τ ) t → +∞. (49)

The squared asymptotic amplitude function q2(t) is directly decomposed into its real
and imaginary parts, whereby the real part (EM) is constant and the imaginary part oscillates
between ±

√
1 − E2

M . This is a straight line segment crossing the real axis at EM in the
complex q2-plane (compare illustrations in figure 1 and figure 2).

Example 3 (The rectangular-pulse Milne solution I—the indirect derivation). We can construct
the Milne solution from the symmetry solutions in example 2. In the appendix the basic theory
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Figure 2. A different view of the Milne solution in figure 1 as a function of time.

for expressing Milne solutions in terms of fundamental solutions of the complex parametric
oscillator is outlined. With basic solutions C1(t) and S1(t) satisfying a unit Wronskian relation,
the Milne solution is obtained as

ρ1(t) =
√

C2
1 (t) + S2

1 (t). (50)

With basic solutions C2(t) and S2(t) having a Wronskian equal to −1, the Milne solution is
obtained as

ρ2(t) =
√

−C2
1 (t) − S2

1(t). (51)

For the inner region we thus find

ρ1 = ρ2 = 1√
γ

= (1 + β2)−1/4 0 � t � T (52)

and for the external region we obtain after some algebra

ρ1(t) = ρ∗
2 (t) =

√
1

γ
+ i

β

γ
sin 2(t − T ) t � T . (53)

We note that the phase shift 2γ T does not contribute to these expressions and that 2T is the
range of the rectangular pulse. Finally, the Milne energy is found from (53) (see figure 3), i.e.

EM = γ −1 = (1 + β2)−1/2. (54)

We now use the results of example 3 to define the relevant pulse duration parameter for
more general pulse shapes. In particular, we note that the asymptotic oscillation described
by (53) starts between the turning points rather than at a turning point (see the discussion of
equation (49)).

The reference form for the asymptotic Milne solution is thus taken as

ρ(t) → q(t) =
√

EM + i
√

1 − E2
M sin(2t − τ0) t → +∞ (55)
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Figure 3. Expression (44) for EM approaches the constant real value 0.46. Note that EM is a
constant of motion only in the asymptotic region.

where τ0/2 is the real passage prior to the fitting time t = T . τ0 also corresponds to the
duration of the pulse in this theory. For negative times this expression has to be complex
symmetric: the replacement τ0 → −τ0, together with t → −t , gives q(−t) = q∗(t).

From numerical calculations of ρ(t) and ρ̇(t) we conclude that we can now also compute
numerical values of a real EM and a real τ0.

Example 4 (The rectangular-pulse Milne solution II—the direct derivation). Here we directly
work with Milne’s equation (42). We determine the constant amplitude ρ in the ‘inner’ region
and fit it with the reference form (55) for the outer region.

In the inner region we have �(t) = β, which is constant, with the consequence that
ω =

√
1 + β2. The ‘stationary’ amplitude function solving the Milne equation becomes

ρ = (1 + β2)−1/4 (56)

which is also constant. This real value has to be fitted to the complex coherent oscillation
typical of the asymptotic oscillations with a Milne energy 0 < EM < 1. Using formula (55)
we derive the pulse duration τ0 from the matching time (t = T ) from the relation

T = τ0/2. (57)

The Milne energy is determined also from formula (55) (since ρ is assumed continuous),
which gives (same as in example 3)

EM = (1 + β2)−1/2. (58)

A concluding note. Consistency with the definition of the Milne energy in the ‘outer region’
requires here (the rectangular-pulse case) a discontinuity of the Milne solution at the instant
of the ‘fitting’, so that the asymptotic oscillation starts with

q̇(T ) = i

√
1 − E2

M

EM

t = T . (59)

For a continuous pulse, as in figure 1, the derivative of the Milne solution is also continuous.
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5. Derivation of transition amplitudes

We now explicitly rederive the transition matrix for the complex symmetric case, following
closely the arguments in [9]. We recall that the parametric oscillator (25) has two independent
solutions specified by

g1(t) = exp(it) as t → −∞ (60)

g1(t) = A11 exp(it) + A21 exp(−it) as t → ∞ (61)

and

g2(t) = exp(−it) as t → −∞ (62)

g2(t) = A12 exp(it) + A22 exp(−it) as t → ∞. (63)

The matrix elements Aij are labelled according to section 2 and are analysed by the amplitude-
phase theory in the present section. As defined here, Aij are formally equivalent to Pij

appearing in the classical parametric oscillator in [9].
The amplitude-phase ansatz x = ρ exp(iθ) (see [9]), using the symmetric coherent Milne

solution ρ(t), suggests the symmetric/anti-symmetric cos/sin fundamental solutions of the
form

C(t) = ρ(t) cos

(∫ t

0
ρ−2(t ′) dt ′

)
S(t) = ρ(t) sin

(∫ t

0
ρ−2(t ′) dt ′

)
. (64)

Both these solutions satisfy the parametric harmonic oscillator equation (39). The complex
symmetries of these (complex odd/even) solutions are

C(−t) = C∗(t) S(−t) = −S∗(t). (65)

The analysis of the asymptotic region t → +∞ in [9] is modified slightly. Here we assume a
finite range 2T of the symmetric pulse. The asymptotic analysis yields

C(t) → q(t) cos(φ(t) + δ′) S(t) → q(t) sin((φ(t) + δ′) t → +∞ (66)

with
φ(t) = tan−1

(
EM tan(t − τ0/2) + i

√
1 − E2

M

)
(67)

δ′ =
∫ T

0
ρ−2(t) dt − φ(T ). (68)

A further trigonometric analysis reveals

q(t) cos φ(t) = cos(t − τ0/2)/
√

EM (69)

q(t) sin φ(t) = i

√
1 − E2

M

EM

cos(t − τ0/2) +
√

EM sin(t − τ0/2). (70)

The fully symmetric solutions then become

lim
t→∞(C(t), S(t)) = (cos(t − τ0/2), sin(t − τ0/2))

(
1√
EM

i
√

1−E2
M

EM

0
√

EM

)(
cos δ′ sin δ′

−sin δ′ cos δ′

)
.

(71)
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Symmetry provides the asymptotic analysis as t → −∞, i.e.

lim
t→−∞(C(t), S(t)) = (cos(t + τ0/2), sin(t + τ0/2))

(
1√
EM

i
√

1−E2
M

EM

0
√

EM

)(
cos δ′∗ −sin δ′∗

sin δ′∗ cos δ′∗

)
.

(72)

The ‘τ0-dressed’ forward and backward connections are now defined as matrices:

T+ = 1√
EM

(
cos δ′ − i

√
1 − E2

M sin δ′ sin δ′ + i
√

1 − E2
M cos δ′

−EM sin δ′ EM cos δ′

)
(73)

T− = 1√
EM

(
cos δ′∗ + i

√
1 − E2

M sin δ′∗ −sin δ′∗ + i
√

1 − E2
M cos δ′∗

EM sin δ′∗ EM cos δ′∗

)
. (74)

These are unit matrices with simple relations to their inverses. They combine to a τ0-dressed
overall transition (using trigonometry):

Mτ0 = T+T−1
− =

(
cos δ − i

√
1 − E2

M sin δ EM sin δ

−EM sin δ cos δ + i
√

1 − E2
M sin δ

)
. (75)

We have used a redefined real phase δ = δ′ + δ′∗ here. The pulse-induced transitions for
undressed cos/sin oscillations are then given by the matrix elements of M, where

M =
(

cos(τ0/2) −sin(τ0/2)

sin(τ0/2) cos(τ0/2)

)
Mτ0

(
cos(τ0/2) −sin(τ0/2)

sin(τ0/2) cos(τ0/2)

)
. (76)

The corresponding transition matrix for propagating complex solutions (exp(it),
exp(−it)), according to [9] and the note following equation (63), is expressed as

A =
(

exp(−iτ0/2) 0
0 exp(iτ0/2)

)
Aτ0

(
exp(−iτ0/2) 0

0 exp(iτ0/2)

)
(77)

Aτ0 = C−1Mτ0 C (78)

with

C =
(

1 1
i −i

)
. (79)

In explicit form we have

A =
(

(cos δ + iEM sin δ) e−iτ0 −i
√

1 − E2
M sin δ

−i
√

1 − E2
M sin δ (cos δ − iEM sin δ) eiτ0

)
. (80)

Note. For a vanishing pulse, we have EM → 1 and δ → τ0. The transition matrix becomes
a unit matrix. As the complex pulse increases the real Milne energy decreases. In the strong
pulse limit EM → 0 and we recover unit amplitude modulations depending only on δ which
corresponds to the area of ω in the pulse region. The formula is similar but different from that
of the real pulse.

In figure 4 we illustrate the behaviour of the dynamical model parameters Em, τ0 and δ,
as functions of the strength β of a pulse model �(t) = β cos2(πt/(2T )). The important point
with the construction of this theory is to find a simple dependence of dynamical parameters
on the pulse parameters (see also [9]).
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Figure 4. The dynamical parameters δ, τ0 and EM as functions of the pulse strength β. The pulse
is �(t) = β cos2(πt/(2T )) and has a finite range T = 1.
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Figure 5. The behaviour of the effective parameters for the cos2-pulse model (top) with fixed
range T = 1.

6. Equivalent rectangular pulses

In the present section we analyse the dynamics in terms of the new shape parameters and we
point out that for each interaction pulse there is an equivalent effective rectangular pulse as
regards the transition probabilities in a two-level system. The three new parameters EM, τ0

and δ exactly describe the quantal results, and are by construction closely connected to the
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Figure 6. The original cos2-pulse with β = 10 and T = 1 is compared to the equivalent rectangular
pulse with βeff = 2.61 and τeq = 3.61.
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Figure 7. Intermediate dynamics for the cos2-pulse model (top) with β = 10 and T = 1, and the
equivalent rectangular pulse (bottom) with βeff = 2.61 and τeq = 3.61.

properties (2T , β) of a rectangular pulse. We recall that

EM = 1√
1 + β2

(rectangular pulse) (81)

τ0 = 2T (rectangular pulse). (82)

With the connection to the rectangular pulse they account for three aspects of a more general
interaction pulse. From EM we can define an ‘effective rectangular-pulse strength’ βeff :

βeff =
√

1 − E2
M

EM

(any pulse). (83)
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Similarly, τ0 becomes the ‘effective rectangular-pulse duration’ and δ, the dynamical phase
shift, becomes the ‘effective (dressed) rectangular-pulse area’ (see section 2). However, since
only two parameters can be independent, there must exist some relation between them. For
the rectangular pulse model we have the explicit relation:

δ = τ0

EM

(rectangular pulse). (84)

Such a simple relation does not exist for the ‘effective rectangular-pulse’ parameters of an
arbitrary pulse. As a consequence, our effective parameters are so far three independent aspects
of the interaction pulse. On the other hand, the actual quantal measurement situation requires
only the absolute squares of the transition amplitudes (see equations (61), (63) and (80)), so
the ‘effective’ pulse duration is formally redundant. However, if we are to analyse interference
effects the pulse duration will be important. With standard definitions of probabilities, we are
thus left with δ and βeff as the relevant exact pulse characteristics. In this situation we can
also introduce an ‘equivalent rectangular-pulse duration’ (rather than ‘effective’) through the
above relation, i.e.

τeq = δEM = δ√
1 + β2

eff

(any pulse). (85)

For two-level systems with a pulse interaction we then have with τeq and βeff a quantally
equivalent rectangular pulse which provides exactly the same transition probabilities. We
illustrate this idea and compare in figures 5–7 a cos2-shaped pulse

�(t) = β cos2(πt/(2T )) (86)

and an equivalent rectangular pulse

�(t) = βeff −τeq/2 � t � τeq/2. (87)

In figure 5 we observe the monotonic behaviour of τeq and βeff as functions of the strength
parameter β of the cos2-pulse with a fixed T = 1. A particular pair of equivalent pulses is
shown in figure 6. Both pulses lead to the same transition probabilities, as can be seen from
the detailed population dynamics in figure 7.

7. Conclusions

The analysis of the two-state quantum transitions introduces the two quantities EM and δ

in this theory. The phase shift δ is again an accumulated dynamical phase due to the interaction.
The Milne energy EM gives a measure of the strength of the pulse in the sense explained
in the preceding section. The effective duration τ0 of the pulse is no longer explicit, but for
illustrative purposes an equivalent rectangular-pulse duration τeq and a quantum mechanically
equivalent interaction pulse can be defined.

The coherent oscillation of the underlying Milne solution, with complex conjugate turning
points, is a limiting condition for the applicability of the present theory. Precise conditions
for the existence of such oscillations are still lacking.
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Appendix. Connection between Milne solutions and parametric harmonic oscillator
solutions

A general solution of Milne’s equation can be expressed in terms of any pair of basis solutions
for the parametric oscillator. This fact is related to the nonlinear superposition principle for
the so-called Ermakov systems (see [15–17]).

Assume a formal amplitude-phase basis and an arbitrary basis of the parametric oscillator
in column-vector notation

f(t) =
(

ρ(t) cos
∫ t

0 ρ−2(t ′) dt ′

ρ(t) sin
∫ t

0 ρ−2(t ′) dt ′

)
g(t) =

(
g1(t)

g2(t)

)
. (A.1)

The lower limit of the phase integral in f(t) is arbitrarily put to t = 0 here. As long as ρ(t)

satisfies Milne’s equation, f(t) and g(t) are two bases of the oscillator equation. They can be
expressed in terms of each other. Let B be a 2 × 2 matrix such that

f(t) = Bg(t). (A.2)

Defining the notation

F(t) = (f(t), ḟ(t)) G(t) = (g(t), ġ(t)) (A.3)

we have

F(t) = BG(t). (A.4)

Given the basis g(t), B is fully determined from the initial conditions (ρ0, ρ̇0) of ρ(t) through
the relation

B = F(0)G−1(0) (A.5)

where

F(0) =
(

ρ0 ρ̇0

0 ρ−1
0

)
. (A.6)

Different initial conditions (ρ0, ρ̇0) result in a different amplitude-phase basis, which however
possesses the same Wronskian constant.

Finally ρ2(t) is solved from (A.2) by taking the scalar product (not the complex scalar
product), i.e.

ρ2(t) = fT (t)f(t) = gT (t)BT Bg(t). (A.7)

This leads to

ρ2(t) = ηg2
1(t) + λg2

2(t) + 2
√

ηλ − (det G)−2g1(t)g2(t) (A.8)

where the two new parameters are

η = B2
11 + B2

21 = (
(ρ0ġ2(0) − ρ̇0g2(0))2 + g2

2(0)ρ−2
0

)/
det G2 (A.9)

λ = B2
22 + B2

12 = (
(ρ0ġ1(0) − ρ̇0g1(0))2 + g2

1(0)ρ−2
0

)/
det G2. (A.10)

It is interesting to recognize so-called Ermakov–Lewis invariants satisfied by the basis solutions
g1(t), g2(t) (see [11] and original references [18, 19])

Lj = 1
2

(
(ρ0ġj (0) − ρ̇0gj (0))2 + g2

j (0)ρ−2
0

)
. (A.11)

In terms of these we find the alternative expressions:

η = 2L1/det G2 λ = 2L2/det G2. (A.12)
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This results in a formal relation between any Milne solution specified by initial conditions and
any non-singular basis for the corresponding oscillator equation:

ρ2(t) = 2

det G2

(
L1g

2
1(t) + L2g

2
2(t) +

√
4L1L2 − det G2 g1(t)g2(t)

)
. (A.13)

This equation includes two Lewis invariants rather than one [15]. Moreover, this relation is
valid for complex parameter functions ω2(t). For the present purposes we treat the version in
(A.8) as our basic result for ρ2.

Some specific examples. For stationary initial conditions (ρ̇0 = 0) and a standard real basis
(g1(0), g2(0)) = (1, 0) and (ġ1(0), ġ2(0)) = (0, 1), we have from (A.9) and (A.10) the explicit
expressions

η = ρ2
0 λ = ρ−2

0 with det G = 1. (A.14)

For a standard complex basis (g1(0), g2(0)) = (1, 1) and (ġ1(0), ġ2(0)) = (i,−i), we find
instead

η = 1
4

(
ρ2

0 − ρ−2
0

)
λ = 1

4

(
ρ2

0 − ρ−2
0

)
with det G = −2 i. (A.15)

The Milne solution (A.8) is still the same function of time, as can be verified from these two
examples.

Example 5 (The rectangular-pulse amplitude function). Symmetry solutions for the
rectangular pulse are obtained in example 2. In the pulse region, x1(t) and x2(t) satisfy
the same second-order differential equation. However, the first-order differential equations
constrain the basis for x2(t) to be some linear combination of the basis for x1(t). We show in
this example how a stationary Milne solution develops in the different components x1(t) and
x2(t). With the specific basis for x1(t)

g1(t) = C1(t) = cos(γ t)/
√

γ g2(t) = S1(t) = sin(γ t)/
√

γ t < T (A.16)

the stationary Milne solution at t = 0 is described by

η = γρ2
0 λ = γ −1ρ−2

0 det G = 1. (A.17)

Inserting into (A.8) we get

ρ2
1(t) = ρ2

0 cos2(γ t) + γ −2ρ−2
0 sin2(γ t) t < T . (A.18)

For this to be truly constant inside the pulse we choose the initial value

ρ0 = 1/
√

γ . (A.19)

Then we have

ρ2
1(t) = g2

1(t) + g2
2(t) = 1

γ
(cos2(γ t) + sin2(γ t)) = 1/γ t < T . (A.20)

With the different basis for x2(t),

g1(t) = C2(t) = β cos(γ t)/
√

γ + i
√

γ sin(γ t) t < T (A.21)

g2(t) = S2(t) = −i
√

γ cos(γ t) + β sin(γ t)/
√

γ t < T (A.22)

the stationary Milne solution at t = 0 is described by

η = β2γρ2
0 − γρ−2

0 λ = −γ 3ρ2
0 + β2γ −1ρ−2

0 det G = −1. (A.23)

Choosing the same initial condition (A.19) these expressions simplify to η = λ = −1 and the
corresponding Milne solution satisfies

ρ2
2(t) = −g2

1(t) − g2
2(t). (A.24)

Inserting the basis functions we again get the constant behaviour (A.19)–(A.20) in the pulse
region.
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